L reome ey,

o R

L trex."veper §

—
)

= ‘ % ¢ —_—
? NATIONAL ADVISORY COMMITTEE 3= 3
2 FOR AERONAUTICS =k

TECHNICAL NOTE 3791

ON A METHOD FOR OPTIMIZATION OF TIME-VARYING
LINEAR SYSTEMS WITH NONSTATIONARY INPUTS
By Marvin Shinbrot

Ames Aeronautical Laboratory
Moffett Field, Calif. ;

Washington {
September 1956 '

- —— e ———



TECH LIBRARY KAFB, NM

NATTONAL ADVISORY COMMITTEE FOR AERONAUTI ”"m "m "ﬂl 'ﬂﬂ "m llm ,ml "ﬂ "l,

0066779

TECHNICAL NOTE 3791

ON A METHOD FOR OPTIMIZATION OF TIME-VARYING
LINEAR SYSTEMS WITH NONSTATIONARY INPUTS

By Marvin Shinbrot
SUMMARY

By means of examples, a new method is illustrated for optimizing,
over a finite interval of time, time-varying systems with stationary or
nonstationary statistical inputs. The method depends on the correlation
functions being of a certain type, which, fortunately, is the type found
in a large number of practical problems of importance.

TNTRODUCTTION

Recently, particularly because of their application to missile and
fire-control systems, considerable attention has been paid to optimiza-
tion techniques for systems having statistical inputs. Historically,
such techniques begin with Wiener's theory (ref. 1) of the optimum design
of constent coefficient linear systems. To apply this theory it is
required that the statistical properties of both the messages and the
noise do not vary with time; quantities having this invariance property
are called "stationary." This requirement, that messages and noise be
stetionary, is quite restrictive, eliminating from consideration even
such a simple problem as the optimal determination of the position of a
gun target, say, when the target is moving with constant speed in a
straight line and the measurements are corrupted by noise. It seems
desirable, therefore, to eliminate this hypothesis, if possible.

In reference 2, Booton attempted to generalize the Wiener theory
to include nonstationary inputs and time-varying linear operations.
Booton arrived at an integral equation, the solution of which would be
the impulse response of the optimum system. However, no method for
solving the equation was given.

A new method for solving integral equations such as the one Booton
derived was recently discovered (unpublished). This method requires that
the correlation functions which arise be of a certain form; fortunately,
this requirement is very frequently satisfied in practice.

The purpose of this report is the illustration by means of examples
of the eppligation of this method. Since nonstationary optimization
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problems may lead to & time-varying linear system as the optimum, the
report begins with a brief discussion of the perhaps unfamiliar idea of
& time-varying transfer function. The report proceeds with an outline
of a variant of the theory of reference 2, itemized, step-by-step pro-
cedures for solving the integral equation for the impulse response of
the optimum system, and some relatively simple examples. Techniques for
" determining the differential equations of the optimum system from the
impulse response are also shown in the examples. It is hoped that a
study of these examples will be sufficient introduction to the subject
to allow the method to be applied to more difficult practical problems.

PRELIMINARY DISCUSSION.

TIME-VARYING TRANSFER FUNCTIONS

The meaning of the impulse response g(t-T) of a time-invarient
transfer function is well known. If the transfer function in question
is of the form

(@) .

F(p)
where p denotes the operator - d/dt s &and f and F are polynomials,

then g(t-7) is the response of this system at time t +to an impulse
applied wvhen t=7; that is,

F(p)e(t - ) =£(p)8(t - 7)

where (%t - T) symbolizes the Dirac & function (ref. 3). The most
important property of this impulse response is that if i(t) is any input
to the system, then the output in response to i(t) is

t
g(t - 7)i(r)ar (1)

=00

For time-varying systems, the idea of an impulse response also
exists. Consider the transfer function

£(t,p)
F(t:P)

The impulse response g(t ,T) for this system then satisfies the equation

F(t:P)g(t:T) = f(t:P)S(t -T)




NACA TN 3791 3

It should be noted that for time-varying systems, the impulse response

is some function of t and T, and does not depend on their difference
alone, The fundamental property (1) carries over to time-varying systems.
If i(t) is any input to the system, the output is

X .
f glt,n)i(r)ar (2a)

-0

As an example of this, consider the simple system with transfer
function :

1
p+1t2

The impulse response satisfies the equation

2

= g(t,r) + tfg(t,r) =8(t - 1)

It can be shown that this means

T3-13
glt,V=e 3 u(t-7)

(vhere u(t) is the unit step function: wu(t)=0, t <0, u(t)=1, t > 0)
8o that the response to any input i(t) is

8 b
e af e3i(t)ar
=00

Note, incidentally, that

g(t,7)=0 for t<T
This must always be the case for, if it were not, the sirstem would be
required to respond to an input before the latter occurred.

NOTATION AND DEFINITIONS

Although the ideas discussed herein have application to different
fields, for ease of expression, the language of communication theorist

e e e et et s e = " ——
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will be used throughout - thus, we shall speek of "filters" designed to
derive from an "input" an approximation to a "message" which has been
corrupted by "noise.”

Now, there will always be an ensemble of messages it is desired to
transmit. Denote a typlcal message by the symbol n(t; L1y o o oy %) s the
perameters o indicate which particular message of the ensemble is being
considered. Denote the possible roise functions by n(t; Bis o o oy BN).
The input to the filter we are attempting to design is defined by

1(t5 @, - - o s Biy o o oy BN)

=m(t; wy, o « o5 og) +0(t; B1, + + o, By)

If £(t5 @1, o « «» @y B1y » o o, PBy) 18 any function of + and
the parameters o and B, we shall mean by

A'V'{f(t} iy o o oy Uy B1is o ¢ o BN)}

the average of f with respect to the a's and B's, that is, with respect
to the ensemble.

For later use, we now define the following correlation functions:

q)m(t:T)"Av{m(ti Wiy o « o« UM)m(TS U'J:: o o oy GM)}

¢m(tﬁ)=AV{m(t; @1, o o o5 ilTs @1, o o oy, B1s, o - o, BN)} P (3)

‘Pii(t,'r)"Av{i(ti W1y o o o5 Oypy Bay o o oy ﬂn)f('rs @ry o o oy Gy By o o o) an')} )
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THE INTEGRAL EQUATION FOR THE OPTIMUM

In reference 2, Booton, using the methods of reference k4, derived
an integral equation for an optimm filter. Although the methods to be
discussed are applicable to Booton's equation also, we shall apply it to
a slightly different one. The reason for this is that Booton considered
the general case when the inputs to the filter have no beginning in time,
so that the system has been in operation infinitely long. Of course, in
all real situstions, a starting point exists - a time when the telephone
is first picked up or the missile is first fired, etec. In view of this,
the simplifying assumption that the inputs are nonexistent (zero) up to
8 certain time will be made here. By an appropriate choice of the time
scale, this distinguished instant may be made zero. In this case, the
response (2) of & system with impulse response g(t,T) to the input
1(t) reduces to

%
f g(t,7)i(r)ar (2p)

-0

Now, it is desired to filter the inputs to give as good as possible
a representation of the messages; that is, it is desired to specify an
impulse response g(t,T) such that, in accordance with (2b)

t
f g('b,T)i(T; L1y o o oy Qg 2 Biy, » - o, BN)dT

(o]

1s as close as possible to m(t; @i, « . +, aqy). The expressions "as
good as possible" and "as close as possible” remain to be defined. They
will be taken to mean that the mean square error is &s small as possible -
that is, g(t,T) is to be chosen such that

Ez(t)sAv{En(t; Q1s = o oy Opy) =

ftg(t,'r)i('r; @iy o o o5 Gy BLy o o oy pN)d.'r]z} (k)

o

is a minimum. It should be noted, incidentally, that the mean square
error E2 is a function of + since the average is taken with respect
to the ensemble with +t fixed.

Now, it is not hard to show that equations (3) and (ka) together
give
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7 t 1
Ea(t)=q>mm(t,-b) -2f g(’t,'l’)mmi(t,'r)d'r+f g(t,) f g(t,o‘)qaii(-r,o')do' ar
) ) ' o)

(5a)

and, by a method exactly parasllel to the one used in references 2 and L,
it can be shown that this error is a minimm if and only if g(t,T)
satisfies the linear integral equation

t
q>mi(t,'r) =f g('t,o‘)cpii('r,c)d.c s . for 0<T<t . (6a)
[}

Inserting equation (62) into (5a) gives for the minimum mean square
error:

"
E2 0 (4) = g (6,8) - f &(t, 7)o (t,7)ar (72)

[s]

Not infrequently, it is desired to generalize this technique in the
gsense that it is desired to obtain from the input some quantity dependent
on the message but not the message itself. Thus, for example, it might
be desired to predict the message h seconds hence or to integrate or
differentiate the message. To do this, we minimize

E2(t) =Av{ [p.(‘b; Wiy « o o oEM)-

t

[

o

2
g(t,7)E(Ts @1y - -« o5 o> Bry o - o st] } (kb)

vwhere p is the quantity we wish to obtain from the input. Thus, if it
is desired to integrate the message, p(t; @1, . . ., ay) is the integral
of m(t; @1, « - -, ay); if it is desired to differentiate the message,
p is the time derivative of m, ete. Defining

(Puu(t,'f)=AV{ll(t5 @1y » - o5 (T @2, o - o, aM)}

(Pui(t"r)':Av{ﬂ-(ti Try o o aM)i(T; Qyy « » o5 Oy Brs o o <, BN)}
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we find that the generalization of equation (5a) is

t t t
B2(t) = 9, (5,) - 2 [ a(t, oy (6, mar s f g(t,7) f g(t,0)0;, (7,0)do ar
[o] o [o]

(5b)

The equetion from which the optimum Impulse response is to be determined
is

+
9 (t,7) = f a(t,0)0;,(t,0)a0 , for O<T<t (6v)
(o]

and the minimum mesn square error is

t
Bin(6) = 0, (8,8) - [ (e, (t,)ar (7o)

[¢]

Since equation (6b) is the more general, in the sense that it reduces
to (6a) wvhen p is set equal to m, all considerations which follow will
refer to this equation. If the problem is simply one of filtering, it
will only be necessary to set | =m in all that follows.

ASSUMPTTIONS
The basic assumptions which will be made in this paper are the

following:

(1) The functions @u4(t,T) and q>ui(t,'r) are of the forml

P 3
Y ap(tdop(r) , T
q)j_i(t:'r) =i .
ia'_p(")bp(t) ’ T>t > (8a)
. 1 )
q’p.i(t"r) = icp(‘b)'bp('r) R T<t .
1 /

1More generally, ;54 is allowed to involve O functions depending

on t-7 (vhite noise); however, as will be seen, this is a limiting case
of the form (8).
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(i1) If ay(t) and bp(t) heve the seme meaning as in (1), then the
quantity

P
W = Z [ap(£)bp(7) - ap(T)bp(t)]

is a function of t -7 alone:

w=w(t-T)

The following remarks on these assumptions ere pertinent. ¥First,
in almost all cases of importance, @;; and @ either will be of the
form (8a) or may be successfully appro:dmateﬁiby functions of this form;
this can be seen from the definition (3) of Pyq and ¢ i as averages of
products of functions of + and functions of +. Second, note that the
expression for q)ii(t ,T) vhen T >t is a necessary consequence of the
assumed form wvhen T <t and is not a seperate assumption since, by its
definition (3), cpii(tjr) = q)ii(-r,t). Third, under certain circumstances

where the assumption (ii) does not apply, alternative methods still exist.
EXAMPLES

Five exemples will be given. They were chosen primarily to illus-
trate different aspects of the problem of solving the fundamental integral
equation. In order to do this most successfully, the examples have been
broken up into three groups: examples involving white noise, examples
with other types of noise, and & third claess of exemples, the necessity
for which will appear as we proceed.

WHITE NOISE

White noise is said to occur when the autocorrelation function of
the noise has the form

ann(t,T) = Nﬁ(t- T)

vhere &(t- T) denotes the Dirac 5 function. As will be seen in the
next section, this kind of noise can be considered as a limiting case of
"econtinuous" noise, and so a problem involving white noise can always be
solved by setting up and solving another problem involving continuous
noise and then teking limits. A simpler procedure, however, would be to
describe a method for solving problems with white nolse directly.
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In order to do so, some assumptions resembling (i) and (ii) above
must be made. We shall assume the following:

(i') The functions of (t,7) and (t,7) have the form
?;4\C, q’p.i »

4

Q Y
Zaq(t)bq(-r)+ mw(t-17) , T<t
q’j_i(t:’f) =< ;
Zaq('r)'bq_('b) +N3(7-t) , T>t > (8b)
| T
Q
0ualt,m) = ) cqlt)ng(n) , T<t
T J

(iir) 1 aq(t) and bg(t) have the same meaning as in (i!), then
q )
the quantity

Q
v = Z[aq(t)bq(r) - ag(7)bg(t)]
1

is a function of t -7 alone:
v=v(t-T)

With these assumptions, a method for solving the integral equation when
the noise is white can be outlined.

STEP 1. Let Bg(s) and V(s) denote the Laplace transforms of
bq(t) and v(t), respectively. Then, find the quantities

r(s)=-2al8 . _q ... 4
4 N+V(s)

and let 74(t) denote the inverse Laplace transform of I’q(s),

STEP 2. Compute
(t) ft (1)74(7)a
I = T)YglT)dT
Pq / ép a

and solve the equations

e e . ——
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[1+ Toa(6)leat) +  Taz() g2(8) + « . .+ - Taq(t) go(t) = ea(t) )
I2y(t) ga(t) + [1 + Tza(t)lga(t) + . . . + Iaq(t) gg(t) = ca(t)
Iga(t) &a(t) + Iga(t) g2(t) + . . . + [1 + Igq(t)lgg(t) = cu(t) J
for the functions gg(t), a=1, . . ., Q.
Finally, let u(t) denote the unit step function:
0, t<0
u(t) = .
1, t>0
Then, the function
g(t,7) = u(t-7) igq(’c)rq('r) (10)
1

satisfies the integral equation for the optimm impulse response.

We now apply this to two examples.

Example I

To begin, consider the following question, equivalent to the one
already posed in the Introduction. A collection of particles leaves the
origin at a certain time; thereafter, each particle moves with constant
(unknown) velocity. Assuming our meesurements to be corrupted by white
noise, wvhat is the best way to determine the positions of the particles
at any succeeding time?

Calculation of the correlation functions.- Let a denote the speed
of a typical particle, and let a2 denote the mean square speed, aver-
aged over all the particles. Although we do not assume o +t0 be known
for any particular particle, we do assume the mean square speed a2 to
be known.

We choose the time that the particles leave the origin as zero, so
that the messages (i.e., the particle positions) are given by

n(t;a) = at , t>0
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Hence, we can compute

P (,7) = Av{(aﬂ(m)} n

-"—'d.'t't"

Tt is assumed here that the noise is white. It follows that it has zero
mean, If it is assumed (quite reasonably) that the noise and the message
are independent, it follows that ¢, = @, = 0, and so0

By (6,7) = Av {m(t)i(T)}

= Av{m(t)m( 'r)} + AV{m(t)n(T)} '

(Pmm(t)'r) + (Pmn(t:'r)

——

= a2tT
Similarly,
¢y (t,7) =0 (t,7) + 9 (t,7)

=a2tT + No6(t - )

The functions @, end cpui(= ®py) clearly have the form (8b) with
Q@ = 1. In fact, we may set

a1(t) =a®t,  by(t) =t , ci(t) =a®t (11)

The integral equation and its solution.- To apply the method outlined
on pages 11 and 12, it is unnecessary actually to write down the integral
equation (6). However, it is convenient to have this equation, since it
can be used to check the answer. With the correlation functions given in
the preceding paragraph, the integral equation becomes

+ .
altr = d.a'l’f og(t,0)do + Ng(t,T) , for 0<T<t (12)
[o]
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The last term in this equation arises from the © function occurring in
the expression for @ ;3 it is not an integral since the fundamental

property of the & function

t
f g(t,0)8(v-0c)doc = g(t,r) if 0<T<t
o

has been used.

We now apply the method outlined earlier to solve equation (12).
First, we check to see if assumption (ii!) is fulfilled. It is, since

a1(t)ba(7) - ai(71)ba(t)

d
it

@Bt e T -aB7 .t

=0

which may be considered as a function of t - T, notebly that function
which is always zero.

We now proceed with the solution.

STEP 1. Since by(t) is as given by (11), we have
_ 1
By(s) = =

Also, since v(t) = 0, V(8) = 0. Thus, we define

1
r (S) =
* Ne=
end inverting
t
£) = 2
71(%) X

STEP 2. Since in this exsmple, @ = 1, we need only find
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+
T.a(t) = f a(n)72(7)ar

o

Hence, equations (9) become
<1 + & t3>gl(t) = a2t
that is,

gi(t) = ?f-t
1 + (a?/3W)t3

Therefore, by equation (10) , the desired solution of the integral
equation (12) can be written:

a2 tT

A u(t - ) (13)

g(t:"’) =

Tt should be noted that g(t,r) venishes if the impulse to which it
is the response occurs at the time + = O. This is so because we have
agsumed that the initial position of the particles is known precisely -
thet is, that at zero time the particles are all at the origin. This is
one of the many respects in which the present simplified exsmple does
not describe the true situastion for an actual gun platform.

The result cen be checked by substitution into equation (12). In
fact, for 0 < v < %,




1h NACA TN 3791

t t — —
a.2-rf og(t,o)ds + Ng(t,7) = ;2'-,-‘-/.l Git 02dg + — a2 b7
° ! N+ (a?/3)t° N + (a2/3)t3

- gBr—_@2t 83, NaPtv
N+ (a®/3)t% 3 N +(oB/3)t8

= o br

which is as it should be.,

The error.- The minimum error can be found by using equation (7a);
in fact, -

‘" —= _
aZ b7 altTdr

2 _
t,- »[N+(§§/3)t3

]
Qm I

E2in(t)

(a®)%t® s

a®t2 - — =
N + (a2/3)t® 3

. NaZ4?
N + (<Z/3)t3

Note that the error approaches zero as t —> ow. ,

The system differential equation.- We shall now derive a differential
equation wvhich relates the input and output of the optimum system. Thus,
we seek two functions, £(t,p) and F(t,p), such that

F(t,p)a(t,7) = £(t,p)8(t-7) - (1)

vhere p = d/dt. These functions are required to be polynomials in p.
Also, for the impulse response (10), the order of the differential equa-
tion is always equal to the number of terms in the sum on the right-hand
side of equation (10) - that is, Q. Thus, we write
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F(t,p) = B0 + g (80092 4 . Lo+ gy(8) (15)

Since there are no 5 functions in the expression (10) for g, the order
of £ is at most Q - 1; hence,

2(t,p) = g (8p%2 + . . .+ ny(t) (16)
Our problem now is the determination of the functions £, and Mo
"In exemple I, @ = 1, and so

F(t,p) = p + ,(t)

f(t :P) = Tl"o(t)

Thus, the differential equation (14) becomes

Sat- g(t,7) + Eo(t)&(t,r) = no(t)5(t- ) (7)

Now, the function E,(t) can be found immediately, since 8(t-7) =0
for t > 1. Thus, for t > T we have-

(a/at) g(t :7)
g('l:,'r)

£o(t) = -

Hence, from equation (13),

2¢2t2 - 3N
t) = =5
£o(t) t(a?+2 + 3N)

and the differential equation (17) becomes

;a% a(t,7) + tf;::::: i) g(t,r) = 15(£)3(t - 7) (18)

To campute 1(t), substitute g(t,r) as given by equation (13) into (18).
This gives '
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i d —q) = ; .
T (9 8(t - 1) = 1,(t)5(t - 7)

using the fact that (da/dt)u(t-71) = 8(t-7). Now,

a2tT a2 12
N + (a3/3)¢° o= ¥ + (2/3)t3 5t - )

since for T # %, both sides of this equation are zero, while for T =1,
they are obviously equal. Hence

a2t2

N + (a2/3)t2 B(6-7)

1,(t)8(t-7) =

that is,

a2t2

N + (a2/3)t°

no(t) =

Therefore, finally, we may say if i(t) is any input to the optimm
system and x(t) the corresponding output, x(t) and i(t) are related by
the equation

(a2 12 + 3W)x + ?ﬁf;_Lﬂ x = 3a2%21

Example IT

For our second example, we consider an air-to-alir missile attack
situation. Since the purpose of thie report is not the development of
an optimum missile guidence system, the problem will be simplified to the
point where the features of the method are not obscured by the special
requirements of the problem., Although the resulting situation is unreal-~
istic, it does still possess some characteristics of interest.

A two-dimensional situation, wherein the missile and the target move ~
in one plane, will be assumed. The missile is fired at a certain time,
called zero, at which it is assumed the target position is known precisely.
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A coordinate system can then be fixed in space in such a way that the
target displacement initially is zero. It is assumed that after a cer-
tain time T +the missile is moving so slowly it can no longer do any
demage; thus, if the target is to take effective evasive action, it must
do so in the first T seconds after the missile is fired. Finally, it
is assumed that the evasive maneuver concerned is a step of magnitude

o, the jump occurring at time ap. Thus, we are comsidering the fol-
lowing ensemble of messages (target displacement):

o, t <ap
m(t;0y,02) =

Calculation of the correlation functions.- Let us assume a certain
probability distribution of magnitudes «; is known; thus, we assume
knovwledge of & function £(x) such that the probsbility that «, lies
between x and x + dx is #£(x)dx. As for the time ap at which the
Jump occurs, let it be assumed that this quantity has equal likelihood
°f taking on eny value in the interval O < ap <T. Then, for 0 < T < t,

oum(t,T) = Av {m(t;oul,cca)m(-r;ml,a,z)}

+c0 T
=% f (ay) f m(t;a; 00)m(T;07 ,00) dasda;
- 00 O

Since m(T;a1,02) = O for o > T, this simplifies to
+
i
P
- 00
(=]

+
% f oy )12y
-00

[><]

.
Py (57) (o) f @3 2dapday
[o]

The integral occurring here is just the mean squere value of «;, what-
ever the distribution function may be; consequently, denoting the mean
square value of a3 by o2, we obtain
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2
P (t,T)=°’T1-'r for v<t

Now, it is obvious from the definition (3) that the autocorrelation
function @ is symmetric in +t and T: @uy(t,7) = @uy(7,t). Hence,

2
q)mm('b,T)=a'—;-t for T>t%

Once again, we assume the noise white and independent of message,
so that

2

E-Tl—- T for T < t
Py (£57) = (£,7) =4 __
d-lz

_T_ t for >t

9’%-—27+N8(t-1-) for v<t
951 (t,T) = Qup(t, T)+opft,7) = §
a‘12

- t + N8(T-1t) for >t

Compering this form with equation (8b), we see that assumption (i!) will
be fulfilled if we choose @ = 1 and
a2 _2

ai(t) = a’%-z , by(t) =t , ei(t) = _T_

The integral equation and its solution.- Equation (6a) becomes, in
this case,

— —_— T —_— t

2 2 2
% T = ?'_;_f og(t,o)do + ETL Tf g(t,o)do + Ng(t,7) , O<T<t
T

Before proceeding to the solution, we check that assumption (i17)
is fulfilled. We have,
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a1(t)by(7) - a1(7)bs(t)

Hence it is fulfilled, with v(t) =

We now apply the method outlined earlier.

STEP 1.

Hence, we define

Consequently,

where

We find first that

Ba(s)

V(s)

~ r'y(s)

72(t)

19
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STEP 2. We have .

+
T;1(t) =f ay(7)7a(r)ar -

o

oé
E

|
[r]
@
=
>

!
[

Hence, equations (9) become

g.(t)cosh At = 2535—2- = N2

that is, »

g1(t) = NA2sech At

Therefore, from equation (10), the optimum impulse response can
be written:

g(t,7) = Mt - T)sech At sinh AT

The error.- The minimum mean squere error msy be found from equation
(7a) to be

—_— t —

2 2
. E2pin(t) =%-t-fksech7\t sinh)«r-‘%--rd-r
[}
= NA tanh At

The system differential equation.- By exactly the same method as was
used in exemple I, the differential equation relating the output of the
optimm system to the input can be shown to be

% + (A tanh At)x = (A tanh At)i
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OTHER TYPES OF NOISE

In this section, we shall assume the autocorrelation of the inputs
not to contain 5 functions. With this essumption and assumptions (i)

and (ii) of pages 7 and 8 , the method for solving the integral equation
can be outlined as follows:

STEP 1. ILet Bp(s) and W(s) denote the Laplace transforms of
'bP('b) and w(t), respectively, and define

Bp(s)

(&) = S0a)

Let 7P(t) denote the inverse Laplace transform of Ip(s).
STEP 2. ©Set

t
Tpg(t) = f ap()7q(r)ar

[¢]

Let dp(t), p=1, ..., P beany P functions baving the form

k
dp(t) = ep(t) - th('b) &L ap(t) (19)
atk
k
Solve the equations

[1 + T1a(t)]ga(t) + I2(t) g2(t) + .« - + Ip(t) gp(t) = dl(t)\
I21(t) galt) + [1 + Izo(t)lga(t) + . . - + Izp(t) gp(t) = ax(t)
Ip,(t) eat) + Ipa(t) ga(t) + . . « + [1 + Ipp(t)lgp(t) = ap(t)

for the gq(t) as-functions of the dp(t). Then, the function

P
g(t,) = th(t)s(k)(t- )+ u(t - ) zgv(tmm (21)
k 1

will satisfy the integral equation (6), whatever the functions hyx may
be.
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STEP 3. Choose the functions hy in such a way that g(t,7)
is as simple as possible, involving the least possible number of
differentiations.

It is realized that the description of step 3 is rather vague, but
examination of the’ examples which follow should clarify this.

We now turn to the examples.

Example IIT
This third example will be the same as the first, the only difference
being in the noise.

The correlation functions.- As in exsmple I, the autocorrelation of
the messages has the form

q;mn(t,'r) = a2t7 (22)

Let us assume that-the noise is independent of the message and hes zero
mean. Then, as before

(Pmi(t:'r)- = q)mm(‘b,T)

< (23)
= a2tT
Finally, we shall take the autocorrelation of the noise to be
Oun(t,7) = BBl o7l (24)

This expression approximates the autocorrelation of actual rader noise.
The assumptions made imply that

@4 (8,7) = BT + pe-Bl t-7l

We mention here that the noise described by equation (24) approaches
white noise as B and B eapproach infinity; this will be shown below.
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The integral equation and its solution.- Once again, it is not neces-
sary to write down the integral equation, but we shall do so since it can
be used to afford a useful check on the results. With the correlation
functions of the preceding section, the integral equation (6a) becomes

t T
a2tT = Ez-'rf og(t,0)do + Be'BTf eP%(t,0)do +
) o
+
BeBTf e P%(t,0)dc , o<Tt<t (25)
T

We now solve this equation by “the method outlined. Comparison of
the expressions (22), (23), and (24) for the correlation functions with
the expressions (8a) gives the results P = 2, and

a2t by (t)

i
ck

a;(t) ci(t) = a2t

ax(t) = Be Bt bo(t) = Bt es(t)

i
o

Hence,

W=oa2t » T - 2T « t + Be Bt . BT _ pe-BT . Bt

-2B sinh g(t - 1)
= w(t-T)
Thus, assumption (1i) is satisfied with
w(t) = -2B sinh Bt

STEP 1. Taking Leplace transforms, we have

Bi(s) = %‘5 ’ Ba(s) = - :.I_' 5
W(s) = - __EBL




24

Therefore, we define

- _852-p2 1
ry(s) T
-1 (g2
= S5g s—a'1>
_ SZ—BZ 1
ro(s) = - B8 8 - B
.8 +B
2Bg

Inverting the Laplace transform gives

72(t) = 513-5 [p2t - 8(t)]
72(t) = 21%5 [8(+) - Bd(t)]

STEP 2. We have

— %
Iia(t) = -zi."%f (g2t - 8(7)lar
[o]

since, in general,
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(26)

2(1)s(® (v)ar = (-1 (0)
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t
Io,(%) = 2%,/" e-BT[Bz'r - 8(7)]ar
[e}

= 2% {[1 - e BY(1 & pt)] - 1}

_e-Bt 1 + Bt
2p

t [ ]
Iea(t) = & f eBT[8(r) - pa(r)lar
[o]

1
55 (P B)
=0
Consequently, equations (20) for g, and g- become

(1 + %‘; 2 )galt) - %fﬁ- ga(t) = a,(%)

- Pt 22 gi(t) + gat) = aa(t)

These equations can be solved to give

2Bpd, (t) + a2 do(t)

t) =6 —
gx(t) = 68 2p2(6B + Baft3) - 3a2(1 + pt)e PP

3B(1 + pt)e PPa,(t) + p(6B + paBt3)an(t)

(27)
282(6B + pa2 t3) - 3a2(1 + pt)e PP

g=(t) = 28
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STEP 3. We have now arrived at the task of sdlidify—.l.ng the earlier
vague description of this step. The idea behind step 3 is very simple
and wes conceived in order to reduce the number of differentiations of

noisy inputs.

Note first that if all functions hyx were taken to be zero,
the solution (21) would contein only the second sum in that expression
and so would resemble very closely our earlier solution (10) for the
case of white noise. However, although the solution (10) of any prob~
lem involving white noise will never contain a differentiator,2 this
is not the case for other types of noise. In the present example III,
the existence of a differentiator manifests itself through the occurrence
of a term 8(%t) in the expression (26) for y,(t).

Now, the function 7y,(T) is multiplied in equation (21) by go(t).
Consequently, if gs could be made to be zero, the differentiator in
72 would be eliminsted. From equation (27), we see that setting go

equal to zero gives an equation in the d's. According to equation (19),
however, the d!'s are functions of the h's. Therefore, if the fune~
tione hyi are free and may be assigned at will, there is the possibility

that go(t) mey be made to venish. In this example, only one function
(go) must be eliminated; consequently, there appears to be need for only
one function h, and so we set

M(t) =0, k>1

4

leaving only ho(t). : - . .
Now, setting go(t) equal to zero gives

3B(1 + pt)ePta,(t) + B(6B + a2 t3)dx(t) = O (28)

By virtue of equations (19) and the given values of the functions
an(t), we have

d1(t) = aBt[1 - ho(t)]
do(t) = -Be Btng(t)

Therefore, equation (28) is equivalent to

3a84( + pt)[1 - ho(t)] - B(6B + BaBt3)hy(t) = O

29mig follows from the fact that when the noise is white, the
integral equation is of ‘the second kind (cf. (12)).
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that is,

ho(t) = 3a2t(1 + Bt)
6BB + 302t +3a2pt2 + a2 p2t3

We know now that with this choice of h, and with all other by

‘teken as zero, go will be zero and the filter will contain no
differentiators.

The calculated value of hg When inserted into the expressions
for d; end dp gives

- Ba2t(6B + BaPid)
a;(t) r— — —
6B8 + 302t + 302pt2 + a2p2t3

aa(t) =- 3Ba2 teBY(1 + pt)
6BB + 302t 4+ 302 pt? + aPp2tS

Therefore,

6BBa2 %
gl(t) - 6BB 3_2-[; 3—§Bt2 a2 p2tS3
+ 3a2t + 3a; + o
g (29)
ga(t) =
By equation (21), then, the optimm impulse response will be
a(t,m) = ) grra(s - (1 4+ pe)8Cs - ) - (0] (30

vhere g,(t) is given by equation (29).

The error. The minimm error can be found using equation (7a);
fact,
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7
f [ 1+pt)5(t-7)+p27-5( 1) lar

[¢]

3(a2 )32

a2t2 - L L L
6BB+3a2 t+3a2pt2+a2p2t>

EZpin(t)

-—Etz l-———._——3§——.=——- ['b 1+t tha:,}
* ‘ 6BB13a2t43a2pt2+aR g2t 2 (14p%) + 3

6BB a2 t2
6BB+302 t43paBt24+aRp2t3

%@ast—aw

Bt

The system equations.-~ Let us partition the impulse response (30)
into two parts; we do this because the term &(T) which occurs is essen-
tially different from the others. Thus, we write

g(t,7) =k(t,7)-1(t,T)
where

k(t,T) = g2 (£) [B2m(t-7)+(1+pt)5(t-7)]
1(%,7) = g2(£)5(7) (31)

Each of these terms is an impulse response in its own right. We begin
this section by finding the differential equation satisfied by the
response k. Thus, we once again seek two functions F(t,p) and £(t,p),
polynamials in p = d/dt, such that

F(t,p)k(t,T) = £(t,p)8(t-T)

The order of F(%t,p) is always equel to the number of terms in the second
sum of equation (21); thus, in general, this order would be P. However,
for ‘this example, go(t) = O, and so there is only one term left in this
sum. Therefore, we set

F(t,p) = p+E,(t)
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There is exactly one & function in the expression (31) for k(t,7); it
follows that £(t,p) has the same order as F - that is, we may set

£(t,0) =1,(t)p +1,(t)
The differential equation we are seeking therefore reduces to
o k(t,7) + EQ(6)E(t,m) = np(8)8(5 - 7) 4 (0)B(6- 1) (32)

As before, 83(t - 1) is zero for +t > T; therefore, we find

_ (3/3t)k(t,7)
k(t,T)

Eo(t) =

_ (3/t)8ra(v)
B21g,(t)

since u(t-7) =1 for t > T. Thus,

- _ £1(%) \
() = ) (33)

To find 7, and 7,, substitute equation (31) imto (32) with &0
given by (33). This gives

g1(t)[B(1+BT)8(% - T)+(L+p)8(t - 7)1 =7 8(t - ) +1,(+)8(t - )
Hence, just as in example T,
1o(t) = §(l+ pt)ga(t)
1, (%) = (1 +pt)ga(t)

Thus, the input-output relationship for that part of the optimum systen
described by the impulse response k(t ,T) can be written
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. _&a(t) . _
2- 80 0 po)ea(0)(p + & (34)

where gi(t) is given by equation (29).

It remains to discuss the impulse response 1(t,T). This response
corresponds to a "memory" element, the output of which is put through a
time-variable "gain." This is clear, for according to equation (2), the
response of the system with impulse response 1 +to any input 1 is

+ t
f 1(t,7)1(1)ar= f 2 (£)8(7)1(7)ar
0 b

- = g1(%)1(0)

Thus, we find the optimm system to be that system whose response
is the difference of the responses of the system described by equation (33)
and the "memory-gain" system having the impulse response 1.

The limiting case.- It wes mentioned earlier that the noise described
by the autocorrelation (24) is approximated by white noise when B and B
are large. To see this, consider the integral equation (25). It is not
hard to show that as B —> o,

ft e’B(T"’)g(t,a)da =§ g(t,T)+ o<.ﬁl_2>
[o]

Hence, if B = N /2, the last two terms of the integral equation (25)
_approach Ng(t ,1-9 as B —> w, 80 that the integral equation itself resem-
bles equation (12) more and more closely. This fact can be used as an
additional check on our results, for the impulse response (30) should
approach (13) as B ~> w. This is the case, for with B = Np/2, then as

B > oo,

ga(t) 328t _ 1
2Bg 3N + a2t B2

Hence, alt the terms in equation (30) except the first approach zero, so
that

30241
3N +o2t3

which agrees with equation (13).

g(t,7) > ﬁ(t -7)
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Example IV

For our fourth example, we consider a problem in approximate differ-
entiation. This will serve to illustrate the solution when the more

general formulation leading to equation (6b) is used. The problem will -
be to find the slope of a measured line passing through the origin.

Calculation of the correlation functions.- Let the equation of the
line be

m=gt
vhere it is assumed that the slopes a have a certain probability dis-
tribution. We shall write a2 for the mean square value of «. Since

it is desired to f£ind the slope of the line, the output of the filter
should as closely as possible approximate the quentity

dm

IJ_=EE=Q,

About the noise, it will be assumed it is independent of the message
and described by the autocorrelation function (24). Then

q)uu(t,-r) =Av {a. . a.}

cpui(t,r) = Av {a. . a.T}
=27

Cpii('b »T) =Av {a.‘t . cc.1‘}+ Be B (t-7)

= Btr+Be-Bl -7l

for t,r > 0.

The integral equation and its solution.- Substituting the above cor-
relation functions into equation (6b), we see that the optimum impulse
response must satisfy

e e e — mm A e e e rp———— e —— - ——
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+t

-
a2t = E_-rf og(t,0)do +Be'BT[ eP%(t,0)do +
[s) .

&
BePT | e PBIg(t,s)ac , O<T<t (35)

T

This equation is very similar to the earlier equation (25) and, in
fact, it can be solved immediately by using the solution- (30) of (25).
Multiply- equation (35) through by +%; the resulting equetion can then be
written

t T
a2tT = gBT f ol tg(t,0)1do +Be BT f eBo[tg(t,0)1do +
[e] [o]

t
BeBTf e~Bo[tg(t,0)ldo , o<T<t
T

which is exactly the same as equation (25) with g(t,0) replaced by
tg(t,0) throughout. Consequently, from equation (30), the impulse
response satisfying (35) is

() = ) [aorule- (1 pt)8(6 - ) - () (36)

where gi(t) is given by equation (29).

The error.- According to equation (7b), the mean square error of the
optimum system will be

t
a2 -f a2rg(t,r)ar

[¢]

E2pin(t)

6BpaZ
6BB + 302t + 3a2pt2 + a2p2tS

6B
—=as t
- BtS —> o |
Note that this implies that the error can be made as small as desired by
measuring the line for large enough t.
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The system equations.- As in example ITI, the optimm response is
now divided in two parts:

g(t,7) = k(t,7) - 1(%,7)

wvhere

(,7) = G fp2ny(s - )41 p0)8(5 - 1))

g1(t)
2Bpt
The input-output relation corresponding to the impulse response k

can be found by using the techniques previoualy described or by using
equation (34). There results

tk + ( 'fgé—ax = (1+ Bt)gl(t)<ﬁi +%

As before, the impulse response 1 corresponds to a memory-gain
element.

1(t,T1) 3(T)

The limiting case.- The above solution (36) simplifies if B and B
are large. 1In this cese, set B = NB/2 and let B —> ». Then,

gt,7) > —3%T _ 4(t- 1)
3N +a2t3

THE CASE w=0

It is clear that one special case exists for which the method of the
last section fails, This is the case when the function w of assump-
tion (ii) is identically zero. The failure arises in the very first step,
since the functions I‘p(s) cannot even be defined. A technique applicable
vhen w = 0 will now be described.

In this case, unfortunately, there is no method which can be followed
mechanically in all cases. The reason for this is that if w = O, there
may not be any, solution. In fact, it can be shown that w = O implies
that there is either no solution at all or else there are infinitely meny.

Tf no solution exists, it means, of course, that the original ques-
tion was improperly posed and it was not an optimization problem at all.
Hence, we shall assume that solutions exist.
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To show how to find a solution, let

P )
g1 (t,7) = Zap(t)bp(f) , Tt _
; > (37)
Pui(t,7) = Zcp(t)bp(f) » TS
1

as before. We now assume that P functions 7_(t) can be found such
that the determinant which hes P

&
Ipg(t) =f ap(0)74(0)do

[e]

in its pth row and gqth colum is different from zero. Unfortumately,
there are no set rules for determining these functions 7,. If these

are known, however, the optimm can be determined as follows.
Solve the following equations for the functions g,(t):

P
) Toa(Wea(t) = @) , =1, .. ., F (38)
. Q=1
Then, the function

P

g(t,T) = th(t)s(k) (t- o)+ u(t-7) ng(t)yp(f) (21)
=1

setisfies the integral equation provided the functions dp(t) are given
by the equation

ap(t) = cp(t) -th(t) a‘%; ap(t) , »=1,...,P (19)
k

Exemple V

To illustrate the method just described, consider the somewhat arti-
ficial problem of measuring the lengths of a collection of rods. Suppose
it is definitely known that these lengths are not less than A, nor more
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than A, inches, and that our measuring device is a ruler which can be
read with an accuracy of *B inches; in this case, the messages, that is,
the lengths of the rods, can be interpreted as steps applied at time zero,
of magnitude o, where A; <a <Ap. Similarly, the noise, that is, the
least reading of the ruler, can be interpreted as a step of magnitude B
where -B < B < B. When viewed in this light, the problem is emenable to
the techniques of this report.

The correlation functions.- Assume that &ll values of o and B in
their respective renges are equally likely. Then, for t,t >0,

Pym(t,7) = AV{m(t;m)m('r;a-)}

=Av{q,. }

1
= a”da
Ap -Ay f

- A12 +A1A2 +A.22
3

Setting A2 = A;2 + AjA, + A52, we have
A2
m(t)T) = 3

Assuming o eand B independent, we see that

Py (E57) = Av{a.(u.+ B)}

- av {a,z}

_ A
-5 (39)

9;4(t,7) = Av {(a.+ B)(a+ ﬁ)}

- A% B° (40)
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The integral equation and its solution.- Substituting the functions
Qpq and @;; into equation (6a) gives for the integral equation for the
optimum
A2 724 B2 ©
5 = ——3——~f g(t,0)do (k1)
o]
which clearly is satisfied by
AZ
glt,r) = 5(t-~T) 4o
7 AZ B2 (k)

Thus, a solution of equation (Y1) can be found by inspeetion; we
now attempt to find & solution by the method described on page 34, In
order to illustrate a difficulty which sometimes arises when applying
any of the methods which have been described, we shall begin with a
wrong procedure.

Comparing equations (37) with equations (39) and (40), we conclude
that we may write P = 2, and

A2

ay(t) = 3 ba(t) =1, ci(t) = é;
az('l'-) = :%2 ) ba(t) =1, cz(t) =0

However, with this choice of these functions, no solution appears to

exist, for no matter what v, and y, may be
+ t
A2 2
T2 Iiz "3—f yi(7)ar %—f yo(T)ar
(o) °
= & =0
t
2 32
Ipy To2 %f yi(T)ar ?’f ya(7)ar
(o} (6]

Thus, we might conclude from what has gone before that no solution
exists; however, this apparent nonexistence of a solution does not with-
stend close analysis, since we know that there is at least one solution -
given by equation (42). The difficulty encountered is due to the fact
that the functions a;(t) and as(t) as chosen above are linearly depend-
ent. In order to arrive at a correct solution, it is always essential
that the functions a;(t) and ay(t) as well as the functions b,(t)
and bo(t) be chosen so that they are independent.
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Perhaps the simplest correct solution of the problem results by
taking P = 1 and setting

A2+ B2
3 J

2
ba(t) =1, cy(t) =&

a,(t) = 3

Then, there is only one function Ipq, notably

t
2, n2
I1.(t) = A—;;-E-f y1(0)do
o

From equation (38), we then conclude that whatever 7, may be,

dl(t)-

t
2 2
A._+:_B._f 71(0')&0'

3 O

ga(t) =

A2 - (A2 +B2)h(t)

B t
(4% +B2) f 71(0)do
[e}

by equation (20). For the usuel reasons, we now set hi(t) =0, k> 1,
to obtain from equation (21)

AZ - (A%+ B%)hy(t)

it
(A2 4+ B2) 71(c)do
[ .

g(t,7) = ho(t)8(t- 7) +u(t- 7) yo(v)  (43)

This function optimizes the system whatever hy(t) may be; clearly the
choice of hgo(t) which most simplifies g(t,T) is

2
bo(t) =

vwhich results in

A2
g(t,m) = R 5(t~ T)

in accordence with equation (42).
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The error.- According to equation (Ta), the mean square error of the
optimum system is )

t
A2 [1_A%  sip.q)]A2
E2 () -5 [ [A2+32 5(t 'r):l 3 ar

B2 __ 1
3 1+(B/a)2
B2 B
&8 -_—
= if £<<1

I+t should be noted, incidentally, that it can be shown that all
systems described by equation (43), no matter what hy(t) may be, have
the same error; of course; this was implied previously by calling all
functions (43) "optima.™ To see this, consider the error corresponding
to the impulse response (43). We have

A2 - (A2+ B®)hy(t)

&
B2(%) = 1_%?.-*‘13_2. ho(t)8(t - ) +u(t - T) . 7o(7)| ar
o (a2+32) [ 73(0)do
| /
&
L O L

£
(A2+ B2) f 71(o)as ©
. (6}

_AZ p2 A2
- 2222 o)

- ho(t)]

+B%

=B ___ 1
3 1+(B/A)2

= E2p4n(t)

The system equation.- It is obvious that the system with impulse
response (42) is a simple gain, Thus, the output is obtained from the
input by multiplication of the latter by the gain A2/(A2+B2), To find
the best estimate (according to the present criterion) of the lengths of
the rods, the measured lengths should be multiplied by A2/(AZ+3B%).

1
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This result, that the optimum system is simply represented by a gain,
is quite general, being true whenever the ratio ‘Ppi/q’ii is a constant.

In such a case, the optimm system is a gain adjusted so that the mean
square of the output is the same as that of the desired quantity p.

Ames Aeronautical Lsboratory
National Advisory Committee for Aeronasutics
Moffett Field, Calif., June 13, 1956
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